Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add filters

Language
Document Type
Year range
1.
Electronics ; 11(17):2682, 2022.
Article in English | MDPI | ID: covidwho-2005970

ABSTRACT

The mutants of novel coronavirus (COVID-19 or SARS-Cov-2) are spreading with different variants across the globe, affecting human health and the economy. Rapid detection and providing timely treatment for the COVID-19 infected is the greater challenge. For fast and cost-effective detection, artificial intelligence (AI) can perform a key role in enhancing chest X-ray images and classifying them as infected/non-infected. However, AI needs huge datasets to train and detect the COVID-19 infection, which may impact the overall system speed. Therefore, Deep Neural Network (DNN) is preferred over standard AI models to speed up the classification with a set of features from the datasets. Further, to have accurate feature extraction, an algorithm that combines Zernike Moment Feature (ZMF) and Gray Level Co-occurrence Matrix Feature (GF) is proposed and implemented. The proposed algorithm uses 36 Zernike Moment features with variance and contrast textures. This helps to detect the COVID-19 infection accurately. Finally, the Region Blocking (RB) approach with an optimum sub-image size (32 ×32) is employed to improve the processing speed up to 2.6 times per image. The performance of this implementation presents an accuracy (A) of 93.4%, sensitivity (Se) of 72.4%, specificity (Sp) of 95%, precision (Pr) of 74.9% and F1-score (F1) of 72.3%. These metrics illustrate that the proposed model can identify the COVID-19 infection with a lesser dataset and improved accuracy up to 1.3 times than state-of-the-art existing models.

2.
Int J Imaging Syst Technol ; 31(1): 28-46, 2021 Mar.
Article in English | MEDLINE | ID: covidwho-1064365

ABSTRACT

The novel coronavirus disease (SARS-CoV-2 or COVID-19) is spreading across the world and is affecting public health and the world economy. Artificial Intelligence (AI) can play a key role in enhancing COVID-19 detection. However, lung infection by COVID-19 is not quantifiable due to a lack of studies and the difficulty involved in the collection of large datasets. Segmentation is a preferred technique to quantify and contour the COVID-19 region on the lungs using computed tomography (CT) scan images. To address the dataset problem, we propose a deep neural network (DNN) model trained on a limited dataset where features are selected using a region-specific approach. Specifically, we apply the Zernike moment (ZM) and gray level co-occurrence matrix (GLCM) to extract the unique shape and texture features. The feature vectors computed from these techniques enable segmentation that illustrates the severity of the COVID-19 infection. The proposed algorithm was compared with other existing state-of-the-art deep neural networks using the Radiopedia and COVID-19 CT Segmentation datasets presented specificity, sensitivity, sensitivity, mean absolute error (MAE), enhance-alignment measure (EMφ), and structure measure (S m) of 0.942, 0.701, 0.082, 0.867, and 0.783, respectively. The metrics demonstrate the performance of the model in quantifying the COVID-19 infection with limited datasets.

SELECTION OF CITATIONS
SEARCH DETAIL